DNA, Transcription, and Translation

DNA

DNA

The spiral structure in the picture is a large organic molecule. Can you guess what it is? Here’s a hint: molecules like this one determine who you are. They contain genetic information that controls your characteristics. They determine your eye color, facial features, and other physical attributes. What molecule is it? You probably answered "DNA." Today, it is commonly known that DNA is the genetic material. For a long time, scientists knew such molecules existed. They were aware that genetic information was contained within organic molecules. However, they didn’t know which type of molecules play this role. In fact, for many decades, scientists thought that proteins were the molecules that carry genetic information. In this chapter, you will learn how scientists discovered that DNA carries the code of life.

What is DNA?

DNA, is the material that makes up our chromosomes and stores our genetic information. This genetic information is basically a set of instructions that tell your cells what to do. DNA is an abbreviation for deoxyribonucleic acid. As you may recall, nucleic acids are the class of chemical compounds that store information. The deoxyribo part of the name refers to the name of the sugar that is contained in DNA, deoxyribose.

The chemical composition of DNA is a polymer, or long chain, of nucleotides. Nucleotides are composed of a phosphate group, a 5-carbon sugar, and a nitrogen-containing base. The only difference between each nucleotide is the identity of the base. There are only four possible bases that make up each DNA nucleotide: adenine (A), guanine (G), thymine (T), and cytosine (C). The various sequences of these four bases make up the genetic code of your cells. It may seem strange that there are only four letters in the “alphabet” of DNA. But since your chromosomes contain millions of nucleotides, there are many, many different combinations possible with those four letters.

But how do all these pieces fit together? James Watson and Francis Crick won the Nobel Prize in 1962 for piecing together the structure of DNA. Together with the work of Rosalind Franklin and Maurice Wilkins, they determined that the structure of DNA is two strands of nucleotides in a double helix (Figure below), or a two-stranded spiral, with the sugar and phosphate groups on the outside, and the paired bases connecting the two strands on the inside of the helix (Figure below).


DNAs three-dimensional structure is a double helix. The hydrogen bonds between the bases at the center of the helix hold the helix together.


The bases do not pair randomly, however. When Erwin Chargaff looked closely at the base content in DNA, he noticed that the percentage of adenine (A) in the DNA always equaled the percentage of thymine (T), and the percentage of guanine (G) always equaled the percentage of cytosine (C). Watson and Crick’s model explained this result by suggesting that A always pairs with T and G always pairs with C in the DNA helix. Therefore A and T, and G and C, are complementary bases. If one DNA strand reads ATGCCAGT, the other strand would be made up the complementary bases: TACGGTCA. These base pairing rules state that in DNA, A always pairs with T, and G always pairs with C.


The chemical structure of DNA includes a chain of nucleotides consisting of a 5-carbon sugar, a phosphate group, and a nitrogen base. Notice how the sugar and phosphate form the backbone of DNA (one strand in blue), with the hydrogen bonds between the bases joining the two strands.