Null hypothesis (H₀) – nulová hypotéza

Definition:

The hypothesis tentatively assumed true in the hypothesis-testing procedure.

Note: The statement do not reject H_0 is often used to avoid accepting that H_0 is true thus this eliminates the possibility of making a Type II error.

Alternate hypothesis (H₁/H_a) – alternatívna hypotéza

Definition:

The hypothesis conducted to be true if the null hypothesis is rejected.

Note:

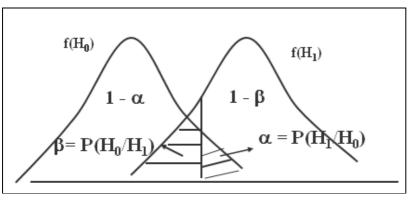
In general, hypothesis testing can be divided into two main parts:

- *testing the validity of a claim* the claims is either correct or not (H_0 can either be accepted (i.e. not rejected) or rejected, action is only taken if H_0 is rejected
- *testing in decision making situations* (H_0 can either be accepted (i.e. not rejected) or rejected, action must be taken if H_0 cannot be rejected or H_0 can be rejected. In this case, the decision maker must choose between two courses of action one associated with the null hypothesis and another one associated with the alternative hypothesis.

Type I error – chyba prvého druhu

Definition:

The error of rejecting H_0 when it is true.


Note: Alpha is the probability of making a Type I error. Expression (1-alpha) is the probability of accepting the correct hypothesis.

Type II error – chyba druhého druhu

Definition:

The error of accepting H_0 when it is false.

Note: Beta is the probability of making a Type II error. Expression (1-beta) is the power of the test.

Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

Topic 5 Hypothesis testing

Power – sila testu

Definition:

The probability of correctly rejecting H_0 when it is false.

Critical value – kritická hodnota (tabuľková hodnota)

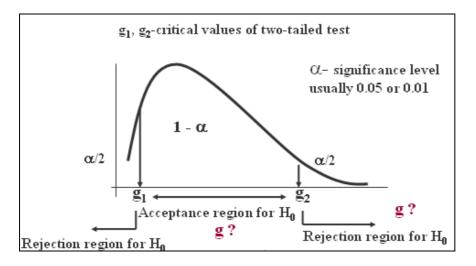
Definition:

A value that is compared with the test statistic to determine whether or not H_0 should be rejected.

Level of significance – hladina významnosti

Definition:

The maximum probability of a Type I error.


Test statistic – testovacie kritérium (testovacia štatistika)

Definition:

The value of the formula of the test statistic that is compared with the critical value to determine whether or not H_0 should be rejected.

Rejection region – obor zamietnutia

Acceptance region – obor prijatia (nezamietnutia)

One tailed test – jednostranný test (**upper-tailed test**; **right-tailed test** (pravostranný test) or **lower-tailed test**; **left-tailed test** (l'avostranný test))

Definition:

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of the sampling distribution.

Two-tailed test – obojstranný test

Definition:

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of the sampling distribution.

Hypothesis test about a population mean – test zhody strednej hodnoty so známou konštantou

$$u = \frac{\overline{x} - \mu_0}{\frac{s_1}{\sqrt{n}}} \quad \text{(normal distribution)} \quad t = \frac{\overline{x} - \mu_0}{\frac{s_1}{\sqrt{n}}} \quad \text{(Student t distribution)}$$

 μ_0 denotes the specific numerical value being considered in the null and alternative hypotheses.

There can be three possibilities:

- population variance is known and the random variable can be approximated by normal distribution (theoretical point),
- population variance is not known (we use the point estimation of population variance=sample variance) and sample size is greater than 30; then the random variable can be approximated by normal distribution N (0,1),
- population variance is not known (we use the point estimation of population variance=sample variance) and sample size is less than 30; then the random variable can be approximated by Student t distribution TINV(alpha; (n-1)).

Solution to hypothesis testing:

- if critical value is greater than test statistic, then the null hypothesis cannot be rejected
- *if critical value is smaller than test statistic, then the null hypothesis is rejected and the alternative hypothesis is accepted*

Independent samples – nezávislé súbory

Definition:

Samples selected from two (or more) populations where the elements making up one sample are chosen independently of the elements making up the other sample(s).

Example: average salary within the Bratislava region and Nitra region

Matched samples – závislé súbory

Definition:

Samples where each data value in one sample is matched with a corresponding data value in the other sample.

Example: impact of advertisement on the height of company's turnover

Hypothesis test about the difference between means of two populations (independent samples) – test zhody dvoch stredných hodnôt nezávislých súborov

There can be four possibilities:

- population variance of all data sets is known and the random variable can be approximated by normal distribution (theoretical point),
- population variance is not known (we use the point estimation of population variance=sample variance) and sample size of all data sets is greater than 30; then the random variable can be approximated by normal distribution N (0,1),
- population variance is not known (we use the point estimation of population variance=sample variance) and sample size of at least one of the data sets is less than 30; then the random variable can be approximated by Student t distribution TINV(alpha; (n-1)) on condition that population variances are equal
- population variance is not known (we use the point estimation of population variance=sample variance) and sample size of at least one of the data sets is less than 30; then the random variable can be approximated by Student t distribution TINV(alpha; (n-1)) on condition that population variances are no equal (Behrens-Fisher test)

$$u = \frac{\overline{x_1} - \overline{x_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{n_2 s_{11}^2 + n_1 s_{12}^2}{n_1 \cdot n_2}}} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{n_2 s_{11}^2 + n_1 s_{12}^2}{n_1 \cdot n_2}}}$$
(normal distribution)
$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{(n_1 - 1)s_{11}^2 + (n_2 - 1)s_{12}^2}{n_1 + n_2}}} \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}$$
(Student t distribution)

Hypothesis test about the difference between means of two populations (matched samples) – test zhody dvoch stredných hodnôt závislých súborov

$$t = \frac{\overline{d}}{\sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n \cdot (n-1)}}} \quad \text{(only Student t distribution)}$$

Tools/Data Analysis:

t-test: Paired two-sample for means – test zhody dvoch stredných hodnôt závislých súborov t-test: Two-sample assuming equal variances – Studentov t test pri homogénnej variancii (test zhody dvoch stredných hodnôt nezávislých súborov pri homogénnej variancii)

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{(n_1 - 1)s_{11}^2 + (n_2 - 1)s_{12}^2}{n_1 + n_2 - 2}}} \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}$$

Elaborated by: Ing. Martina Majorová, Dept. of Statistics and Operations Research, FEM SUA in Nitra Reference: JAISINGH, L.: Statistics for the Utterly Confused

t-test: Two-sample assuming unequal variances – Studentov t test pri nehomogénnej variancii (Behrens-Fisher test)

z-test: Two-sample for means – test zhody dvoch stredných hodnôt, ak poznáme rozptyly základných súborov