
How Microprocessors Work 
by Marshall Brain
The computer you are using to read this page uses a 
microprocessor to do its work. The microprocessor is the 
heart of any normal computer, whether it is a desktop machine, 
a server or a laptop. The microprocessor you are using might 
be a Pentium, a K6, a PowerPC, a Sparc or any of the many 
other brands and types of microprocessors, but they all do 
approximately the same thing in approximately the same way.  

If you have ever wondered what the microprocessor in your 
computer is doing, or if you have ever wondered about the 
differences between types of microprocessors, then read on. In 
this article, you will learn how fairly simple digital logic 
techniques allow a computer to do its job, whether its playing a 
game or spell checking a document!  

Microprocessor History 

A microprocessor -- also known as a 
CPU or central processing unit -- is a 
complete computation engine that is fabricated on a single chip. The 
first microprocessor was the Intel 4004, introduced in 1971. The 
4004 was not very powerful -- all it could do was add and subtract, 
and it could only do that 4 bits at a time. But it was amazing that 
everything was on one chip. Prior to the 4004, engineers built 
computers either from collections of chips or from discrete 
components (transistors wired one at a time). The 4004 powered one 
of the first portable electronic calculators.  

The first microprocessor to make it into a home computer was the Intel 
8080, a complete 8-bit computer on one chip, introduced in 1974. The 
first microprocessor to make a real splash in the market was the Intel 
8088, introduced in 1979 and incorporated into the IBM PC (which first 
appeared around 1982). If you are familiar with the PC market and its 
history, you know that the PC market moved from the 8088 to the 
80286 to the 80386 to the 80486 to the Pentium to the Pentium II to the 
Pentium III to the Pentium 4. All of these microprocessors are made by 
Intel and all of them are improvements on the basic design of the 8088. 
The Pentium 4 can execute any piece of code that ran on the original 
8088, but it does it about 5,000 times faster!  

The following table helps you to understand the differences between the different processors that 
Intel has introduced over the years.  

Name Date Transistors Microns Clock 
speed 

Data 
width MIPS 

8080 1974 6,000 6 2 MHz 8 bits 0.64 

8088 1979 29,000 3 5 MHz 16 bits 
8-bit bus 0.33 

80286 1982 134,000 1.5 6 MHz 16 bits 1 

80386 1985 275,000 1.5 16 MHz 32 bits 5 
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80486 1989 1,200,000 1 25 MHz 32 bits 20 

Pentium 1993 3,100,000 0.8 60 MHz 
32 bits 
64-bit 
bus 

100 

Pentium 
II 1997 7,500,000 0.35 233 MHz 

32 bits 
64-bit 
bus 

~300 

Pentium 
III 1999 9,500,000 0.25 450 MHz 

32 bits 
64-bit 
bus 

~510 

Pentium 
4 2000 42,000,000 0.18 1.5 GHz 

32 bits 
64-bit 
bus 

~1,700 

 
Compiled from The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores  

Information about this table:  

• The date is the year that the processor was first 
introduced. Many processors are re-introduced 
at higher clock speeds for many years after the 
original release date.  

• Transistors is the number of transistors on the 
chip. You can see that the number of transistors 
on a single chip has risen steadily over the 
years.  

• Microns is the width, in microns, of the smallest 
wire on the chip. For comparison, a human hair 
is 100 microns thick. As the feature size on the 
chip goes down, the number of transistors rises.  

• Clock speed is the maximum rate that the chip 
can be clocked at. Clock speed will make more 
sense in the next section.  

• Data Width is the width of the ALU. An 8-bit ALU can add/subtract/multiply/etc. two 8-bit 
numbers, while a 32-bit ALU can manipulate 32-bit numbers. An 8-bit ALU would have to 
execute four instructions to add two 32-bit numbers, while a 32-bit ALU can do it in one 
instruction. In many cases, the external data bus is the same width as the ALU, but not 
always. The 8088 had a 16-bit ALU and an 8-bit bus, while the modern Pentiums fetch 
data 64 bits at a time for their 32-bit ALUs.  

• MIPS stands for "millions of instructions per second" and is a rough measure of the 
performance of a CPU. Modern CPUs can do so many different things that MIPS ratings 
lose a lot of their meaning, but you can get a general sense of the relative power of the 
CPUs from this column.  

From this table you can see that, in general, there is a relationship between clock speed and 
MIPS. The maximum clock speed is a function of the manufacturing process and delays within 
the chip. There is also a relationship between the number of transistors and MIPS. For example, 
the 8088 clocked at 5 MHz but only executed at 0.33 MIPS (about one instruction per 15 clock 
cycles). Modern processors can often execute at a rate of two instructions per clock cycle. That 
improvement is directly related to the number of transistors on the chip and will make more sense 
in the next section.  

Inside a Microprocessor 

What's a Chip? 
A chip is also called an 
integrated circuit. Generally it 
is a small, thin piece of silicon 
onto which the transistors 
making up the microprocessor 
have been etched. A chip might 
be as large as an inch on a side 
and can contain tens of millions 
of transistors. Simpler 
processors might consist of a 
few thousand transistors etched 
onto a chip just a few 
millimeters square. 
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To understand how a microprocessor works, it is 
helpful to look inside and learn about the logic used to 
create one. In the process you can also learn about 
assembly language -- the native language of a 
microprocessor -- and many of the things that 
engineers can do to boost the speed of a processor.  

A microprocessor executes a collection of machine 
instructions that tell the processor what to do. Based on 
the instructions, a microprocessor does three basic 
things:  

• Using its ALU (Arithmetic/Logic Unit), a 
microprocessor can perform mathematical 
operations like addition, subtraction, 
multiplication and division. Modern microprocessors contain complete floating point 
processors that can perform extremely sophisticated operations on large floating point 
numbers.  

• A microprocessor can move data from one memory location to another.  
• A microprocessor can make decisions and jump to a new set of instructions based on 

those decisions.  

There may be very sophisticated things that a microprocessor does, but those are its three basic 
activities. The following diagram shows an extremely simple microprocessor capable of doing 
those three things:  

 

This is about as simple as a microprocessor gets. This microprocessor has:  

• An address bus (that may be 8, 16 or 32 bits wide) that sends an address to memory  
• A data bus (that may be 8, 16 or 32 bits wide) that can send data to memory or receive 

data from memory  
• An RD (read) and WR (write) line to tell the memory whether it wants to set or get the 
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addressed location  
• A clock line that lets a clock pulse sequence the processor  
• A reset line that resets the program counter to zero (or whatever) and restarts execution 

Let's assume that both the address and data buses are 8 bits wide in this example.  

Here are the components of this simple microprocessor:  

• Registers A, B and C are simply latches made out of flip-flops. (See the section on "edge-
triggered latches" in How Boolean Logic Works for details.)  

• The address latch is just like registers A, B and C.  
• The program counter is a latch with the extra ability to increment by 1 when told to do so, 

and also to reset to zero when told to do so.  
• The ALU could be as simple as an 8-bit adder (see the section on adders in How Boolean 

Logic Works for details), or it might be able to add, subtract, multiply and divide 8-bit 
values. Let's assume the latter here.  

• The test register is a special latch that can hold values from comparisons performed in 
the ALU. An ALU can normally compare two numbers and determine if they are equal, if 
one is greater than the other, etc. The test register can also normally hold a carry bit from 
the last stage of the adder. It stores these values in flip-flops and then the instruction 
decoder can use the values to make decisions.  

• There are six boxes marked "3-State" in the diagram. These are tri-state buffers. A tri-
state buffer can pass a 1, a 0 or it can essentially disconnect its output (imagine a switch 
that totally disconnects the output line from the wire that the output is heading toward). A 
tri-state buffer allows multiple outputs to connect to a wire, but only one of them to 
actually drive a 1 or a 0 onto the line.  

• The instruction register and instruction decoder are responsible for controlling all of the 
other components.  

Although they are not shown in this diagram, there would be 
control lines from the instruction decoder that would:  

• Tell the A register to latch the value currently on the data 
bus  

• Tell the B register to latch the value currently on the data 
bus  

• Tell the C register to latch the value currently on the data 
bus  

• Tell the program counter register to latch the value currently on the data bus  
• Tell the address register to latch the value currently on the data bus  
• Tell the instruction register to latch the value currently on the data bus  
• Tell the program counter to increment  
• Tell the program counter to reset to zero  
• Activate any of the six tri-state buffers (six separate lines)  
• Tell the ALU what operation to perform  
• Tell the test register to latch the ALU's test bits  
• Activate the RD line  
• Activate the WR line  

Coming into the instruction decoder are the bits from the test register and the clock line, as well 
as the bits from the instruction register.  

64-bit Processors 
Sixty-four-bit processors have been with us since 1992, and in the 21st century they have started 
to become mainstream. Both Intel and AMD have introduced 64-bit chips, and the Mac G5 sports 
a 64-bit processor. Sixty-four-bit processors have 64-bit ALUs, 64-bit registers, 64-bit buses and 

Helpful Articles 
If you are new to digital logic, 
you may find the following 
articles helpful in understanding 
this section:  
•  How Bytes and Bits Work  
•  How Boolean Logic Works  
•  How Electronic Gates Work  
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so on.  
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One reason why the world needs 64-bit processors is because of their enlarged address 
spaces. Thirty-two-bit chips are often constrained to a maximum of 2 GB or 4 GB of RAM 
access. That sounds like a lot, given that most home computers currently use only 256 MB to 512 
MB of RAM. However, a 4-GB limit can be a severe problem for server machines and machines 
running large databases. And even home machines will start bumping up against the 2 GB or 4 
GB limit pretty soon if current trends continue. A 64-bit chip has none of these constraints 
because a 64-bit RAM address space is essentially infinite for the foreseeable future -- 2^64 
bytes of RAM is something on the order of a quadrillion gigabytes of RAM.  

With a 64-bit address bus and wide, high-speed data buses on the motherboard, 64-bit machines 
also offer faster I/O (input/output) speeds to things like hard disk drives and video cards. These 
features can greatly increase system performance.  

Servers can definitely benefit from 64 bits, but what about normal users? Beyond the RAM 
solution, it is not clear that a 64-bit chip offers "normal users" any real, tangible benefits at the 
moment. They can process data (very complex data features lots of real numbers) faster. People 
doing video editing and people doing photographic editing on very large images benefit from this 
kind of computing power. High-end games will also benefit, once they are re-coded to take 
advantage of 64-bit features. But the average user who is reading e-mail, browsing the Web and 
editing Word documents is not really using the processor in that way. In addition, operating 
systems like Windows XP have not yet been upgraded to handle 64-bit CPUs. Because of the 
lack of tangible benefits, it will be 2010 or so before we see 64-bit machines on every desktop.  

Check out ExtremeTech - 64-bit CPUs: What You Need to Know and InternetWeek - Athlon 64 
Needs A Killer App to learn more.  

RAM and ROM 
The previous section talked about the address and data buses, as well as the RD and WR lines. 
These buses and lines connect either to RAM or ROM -- generally both. In our sample 
microprocessor, we have an address bus 8 bits wide and a data bus 8 bits wide. That means that 
the microprocessor can address (28) 256 bytes of memory, and it can read or write 8 bits of the 
memory at a time. Let's assume that this simple microprocessor has 128 bytes of ROM starting at 
address 0 and 128 bytes of RAM starting at address 128.  
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ROM chip 

ROM stands for read-only memory. A ROM chip is programmed with a permanent collection of 
pre-set bytes. The address bus tells the ROM chip which byte to get and place on the data bus. 
When the RD line changes state, the ROM chip presents the selected byte onto the data bus.  

RAM stands for random-access memory. RAM contains bytes of 
information, and the microprocessor can read or write to those 
bytes depending on whether the RD or WR line is signaled. One 
problem with today's RAM chips is that they forget everything 
once the power goes off. That is why the computer needs ROM.  

By the way, nearly all computers contain some amount of ROM 
(it is possible to create a simple computer that contains no RAM 
-- many microcontrollers do this by placing a handful of RAM 
bytes on the processor chip itself -- but generally impossible to 
create one that contains no ROM). On a PC, the ROM is called 
the BIOS (Basic Input/Output System). When the microprocessor starts, it begins executing 
instructions it finds in the BIOS. The BIOS instructions do things like test the hardware in the 
machine, and then it goes to the hard disk to fetch the boot sector (see How Hard Disks Work 
for details). This boot sector is another small program, and the BIOS stores it in RAM after 
reading it off the disk. The microprocessor then begins executing the boot sector's instructions 
from RAM. The boot sector program will tell the microprocessor to fetch something else from the 
hard disk into RAM, which the microprocessor then executes, and so on. This is how the 
microprocessor loads and executes the entire operating system.  

Microprocessor Instructions 
Even the incredibly simple microprocessor shown in the previous example will have a fairly large 
set of instructions that it can perform. The collection of instructions is implemented as bit patterns, 
each one of which has a different meaning when loaded into the instruction register. Humans are 
not particularly good at remembering bit patterns, so a set of short words are defined to represent 
the different bit patterns. This collection of words is called the assembly language of the 
processor. An assembler can translate the words into their bit patterns very easily, and then the 
output of the assembler is placed in memory for the microprocessor to execute.  

Here's the set of assembly language instructions that the designer might create for the simple 
microprocessor in our example:  

• LOADA mem - Load register A from memory address  
• LOADB mem - Load register B from memory address  
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• CONB con - Load a constant value into register B  
• SAVEB mem - Save register B to memory address  
• SAVEC mem - Save register C to memory address  
• ADD - Add A and B and store the result in C  
• SUB - Subtract A and B and store the result in C  
• MUL - Multiply A and B and store the result in C  
• DIV - Divide A and B and store the result in C  
• COM - Compare A and B and store the result in test  
• JUMP addr - Jump to an address  
• JEQ addr - Jump, if equal, to address  
• JNEQ addr - Jump, if not equal, to address  
• JG addr - Jump, if greater than, to address  
• JGE addr - Jump, if greater than or equal, to address  
• JL addr - Jump, if less than, to address  
• JLE addr - Jump, if less than or equal, to address  
• STOP - Stop execution  

If you have read How C Programming Works, then you know that this simple piece of C code will 
calculate the factorial of 5 (where the factorial of 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120):  

a=1; 
f=1; 
while (a <= 5) 
{ 
    f = f * a; 
    a = a + 1; 
} 

At the end of the program's execution, the variable f contains the factorial of 5.  

A C compiler translates this C code into assembly language. Assuming that RAM starts at 
address 128 in this processor, and ROM (which contains the assembly language program) starts 
at address 0, then for our simple microprocessor the assembly language might look like this:  

// Assume a is at address 128 
// Assume F is at address 129 
0   CONB 1      // a=1; 
1   SAVEB 128 
2   CONB 1      // f=1; 
3   SAVEB 129 
4   LOADA 128   // if a > 5 the jump to 17 
5   CONB 5 
6   COM 
7   JG 17 
8   LOADA 129   // f=f*a; 
9   LOADB 128 
10  MUL 
11  SAVEC 129 
12  LOADA 128   // a=a+1; 
13  CONB 1 
14  ADD 
15  SAVEC 128 
16  JUMP 4       // loop back to if 
17  STOP 

So now the question is, "How do all of these instructions look in ROM?" Each of these assembly 
language instructions must be represented by a binary number. For the sake of simplicity, let's 
assume each assembly language instruction is given a unique number, like this:  
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• LOADA - 1  
• LOADB - 2  
• CONB - 3  
• SAVEB - 4  
• SAVEC mem - 5  
• ADD - 6  
• SUB - 7  
• MUL - 8  
• DIV - 9  
• COM - 10  
• JUMP addr - 11  
• JEQ addr - 12  
• JNEQ addr - 13  
• JG addr - 14  
• JGE addr - 15  
• JL addr - 16  
• JLE addr - 17  
• STOP - 18  

The numbers are known as opcodes. In ROM, our little program would look like this:  
// Assume a is at address 128 
// Assume F is at address 129 
Addr opcode/value 
0    3             // CONB 1 
1    1 
2    4             // SAVEB 128 
3    128 
4    3             // CONB 1 
5    1 
6    4             // SAVEB 129 
7    129 
8    1             // LOADA 128 
9    128 
10   3             // CONB 5 
11   5 
12   10            // COM 
13   14            // JG 17 
14   31 
15   1             // LOADA 129 
16   129 
17   2             // LOADB 128 
18   128 
19   8             // MUL 
20   5             // SAVEC 129 
21   129 
22   1             // LOADA 128 
23   128 
24   3             // CONB 1 
25   1 
26   6             // ADD 
27   5             // SAVEC 128 
28   128 
29   11            // JUMP 4 
30   8 
31   18            // STOP 

You can see that seven lines of C code became 17 lines of assembly language, and that became 
31 bytes in ROM.  



The instruction decoder needs to turn each of the opcodes into a set of signals that drive the 
different components inside the microprocessor. Let's take the ADD instruction as an example 
and look at what it needs to do:  

1. During the first clock cycle, we need to actually load the instruction. Therefore the 
instruction decoder needs to:  

• activate the tri-state buffer for the program counter  
• activate the RD line  
• activate the data-in tri-state buffer  
• latch the instruction into the instruction register  

2. During the second clock cycle, the ADD instruction is decoded. It needs to do very little:  
• set the operation of the ALU to addition  
• latch the output of the ALU into the C register  

3. During the third clock cycle, the program counter is incremented (in theory this could be 
overlapped into the second clock cycle).  

Every instruction can be broken down as a set of sequenced operations like these that 
manipulate the components of the microprocessor in the proper order. Some instructions, like this 
ADD instruction, might take two or three clock cycles. Others might take five or six clock cycles.  

Microprocessor Performance 
The number of transistors available has a huge effect on the performance of a processor. As 
seen earlier, a typical instruction in a processor like an 8088 took 15 clock cycles to execute. 
Because of the design of the multiplier, it took approximately 80 cycles just to do one 16-bit 
multiplication on the 8088. With more transistors, much more powerful multipliers capable of 
single-cycle speeds become possible.  

More transistors also allow for a technology called pipelining. In a pipelined architecture, 
instruction execution overlaps. So even though it might take five clock cycles to execute each 
instruction, there can be five instructions in various stages of execution simultaneously. That way 
it looks like one instruction completes every clock cycle.  

Many modern processors have multiple instruction decoders, each with its own pipeline. This 
allows for multiple instruction streams, which means that more than one instruction can complete 
during each clock cycle. This technique can be quite complex to implement, so it takes lots of 
transistors.  

The trend in processor design has primarily been toward full 32-bit ALUs with fast floating point 
processors built in and pipelined execution with multiple instruction streams. The newest thing in 
processor design is 64-bit ALUs, and people are expected to have these processors in their home 
PCs in the next decade. There has also been a tendency toward special instructions (like the 
MMX instructions) that make certain operations particularly efficient. There has also been the 
addition of hardware virtual memory support and L1 caching on the processor chip. All of these 
trends push up the transistor count, leading to the multi-million transistor powerhouses available 
today. These processors can execute about one billion instructions per second! 
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